Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            In quantum mechanics, supersymmetry (SUSY) posits an equivalence between two elementary degrees of freedom, bosons, and fermions defined by local rules. Here we apply it to find connections between bosonic and fermionic lattice models in the realm of condensed-matter physics and uncover a novel fivefold way topology it demands in these systems. At the single-particle level, our connections pair a bosonic and fermionic lattice model, either describing the hopping of number-conserving particles or local couplings between fermion parity-conserving particles. The pair are isospectral except for zero modes, such as flat bands, quadratic band touchings, and nexus points, whose existence is undergirded by the Witten index of the SUSY theory. We develop a unifying framework to formulate these SUSY connections in terms of general lattice graph correspondences. Notably, in this framework, the supercharge operator that generates SUSY is Hermitian and can itself be interpreted as a hopping Hamiltonian on a bipartite lattice, a feature that enables the discovery of materials or model lattices hosting the SUSY partners. To illustrate the power of SUSY, we present 16 use cases of SUSY, that span topics including frustrated magnets, Kitaev spin liquids, and topological superconductors, the majority of which turn out to provide insights into the discovery and design of flat bands and topological materials. Published by the American Physical Society2024more » « lessFree, publicly-accessible full text available December 1, 2025
- 
            The Unruh-DeWitt particle detector model has found success in demonstrating quantum information channels with non-zero channel capacity between qubits and quantum fields. These detector models provide the necessary framework for experimentally realizable Unruh-DeWitt quantum computers with near-perfect channel capacity. We propose spin-qubits with gate-controlled coupling to Luttinger liquids as a laboratory setting for Unruh-DeWitt detectors and explore general design constraints that underpin their feasibility in this and other settings. We present several experimental scenarios including graphene ribbons, edges states in the quantum spin Hall phase of HgTe quantum wells, and the recently discovered quantum anomalous Hall phase in transition metal dichalcogenides. Theoretically, through bosonization, we show that Unruh-DeWitt detectors can carry out quantum computations and identify when they can make perfect quantum communication channels between qubits via the Luttinger liquid. Our results point the way toward an all-to-all connected solid state quantum computer and the experimental study of quantum information in quantum fields via condensed matter physics.more » « less
- 
            In quantum mechanics, supersymmetry (SUSY) posits an equivalence between two elementary degrees of freedom, bosons and fermions. Here we show how this fundamental concept can be applied to connect bosonic and fermionic lattice models in the realm of condensed matter physics, e.g., to identify a variety of (bosonic) phonon and magnon lattice models which admit topologically nontrivial free fermion models as superpartners. At the single-particle level, the bosonic and the fermionic models that are generated by the SUSY are isospectral except for zero modes, such as flat bands, whose existence is undergirded by the Witten index of the SUSY theory. We develop a unifying framework to formulate these SUSY connections in terms of general lattice graph correspondences and discuss further ramifications such as the definition of supersymmetric topological invariants for generic bosonic systems. Notably, a Hermitian form of the supercharge operator, the generator of the SUSY, can itself be interpreted as a hopping Hamiltonian on a bipartite lattice. This allows us to identify a wide class of interconnected lattices whose tight-binding Hamiltonians are superpartners of one another or can be derived via squaring or square-rooting their energy spectra all the while preserving band topology features. We introduce a five-fold way symmetry classification scheme of these SUSY lattice correspondences, including cases with a non-zero Witten index, based on a topological classification of the underlying Hermitian supercharge operator. These concepts are illustrated for various explicit examples including frustrated magnets, Kitaev spin liquids, and topological superconductors.more » « less
- 
            Metal-organic frameworks (MOFs) are nanoporous compounds composed of metal ions and organic linkers. MOFs play an important role in industrial applications such as gas separation, gas purification, and electrolytic catalysis. Important MOF properties such a potential energy are currently computed via techniques such as density functional theory (DFT). Although DFT provides accurate results, it is computationally costly. We propose a machine learning approach for estimating the potential energy of candidate MOFs, decomposing it into separate pair-wise atomic interactions using a graph neural network. Such a technique will allow high-throughput screening of candidates MOFs. We also generate a database of 50,000 spatial configurations and high quality potential energy values using DFT.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                     Full Text Available
                                                Full Text Available